Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 26
Filtrar
Mais filtros








Base de dados
Intervalo de ano de publicação
1.
Mol Pharmacol ; 104(5): 195-202, 2023 Nov.
Artigo em Inglês | MEDLINE | ID: mdl-37595966

RESUMO

M4 muscarinic receptors are highly expressed in the striatum and cortex, brain regions that are involved in diseases such as Parkinson's disease, schizophrenia, and dystonia. Despite potential therapeutic advantages of specifically targeting the M4 receptor, it has been historically challenging to develop highly selective ligands, resulting in undesired off-target activity at other members of the muscarinic receptor family. Recently, we have reported first-in-class, potent, and selective M4 receptor antagonists. As an extension of that work, we now report the development and characterization of a radiolabeled M4 receptor antagonist, [3H]VU6013720, with high affinity (pKd of 9.5 ± 0.2 at rat M4, 9.7 at mouse M4, and 10 ± 0.1 at human M4 with atropine to define nonspecific binding) and no significant binding at the other muscarinic subtypes. Binding assays using this radioligand in rodent brain tissues demonstrate loss of specific binding in Chrm4 knockout animals. Dissociation kinetics experiments with various muscarinic ligands show differential effects on the dissociation of [3H]VU6013720 from M4 receptors, suggesting a binding site that is overlapping but may be distinct from the orthosteric site. Overall, these results demonstrate that [3H]VU6013720 is the first highly selective antagonist radioligand for the M4 receptor, representing a useful tool for studying the basic biology of M4 as well for the support of M4 receptor-based drug discovery. SIGNIFICANCE STATEMENT: This manuscript describes the development and characterization of a novel muscarinic (M) acetylcholine subtype 4 receptor antagonist radioligand, [3H]VU6013720. This ligand binds to or overlaps with the acetylcholine binding site, providing a highly selective radioligand for the M4 receptor that can be used to quantify M4 protein expression in vivo and probe the selective interactions of acetylcholine with M4 versus the other members of the muscarinic receptor family.


Assuntos
Acetilcolina , Receptores Muscarínicos , Ratos , Humanos , Camundongos , Animais , Acetilcolina/metabolismo , Receptores Muscarínicos/metabolismo , Receptor Muscarínico M4/metabolismo , Atropina , Ligantes , Colinérgicos , Antagonistas Muscarínicos/farmacologia , Antagonistas Muscarínicos/metabolismo , Receptor Muscarínico M2/metabolismo , Ensaio Radioligante , Receptor Muscarínico M1/metabolismo
2.
Neuropharmacology ; 207: 108943, 2022 04 01.
Artigo em Inglês | MEDLINE | ID: mdl-35007623

RESUMO

A stressor can trigger lasting adaptations that contribute to neuropsychiatric disorders. Predator odor (TMT) exposure is an innate stressor that may activate the metabotropic glutamate receptor 3 (mGlu3) to produce stress adaptations. To evaluate functional involvement, the mGlu3 negative allosteric modulator (NAM, VU6010572; 3 mg/kg, i.p.) was administered before TMT exposure in male, Long Evans rats. Two weeks after, rats underwent context re-exposure, elevated zero maze (ZM), and acoustic startle (ASR) behavioral tests, followed by RT-PCR gene expression in the insular cortex and bed nucleus of the stria terminalis (BNST) to evaluate lasting behavioral and molecular adaptations from the stressor. Rats displayed stress-reactive behaviors in response to TMT exposure that were not affected by VU6010572. Freezing and hyperactivity were observed during the context re-exposure, and mGlu3-NAM pretreatment during stressor prevented the context freezing response. TMT exposure did not affect ZM or ASR measures, but VU6010572 increased time spent in the open arms of the ZM and ASR habituation regardless of stressor treatment. In the insular cortex, TMT exposure increased expression of mGlu (Grm3, Grm5) and NMDA (GriN2A, GriN2B, GriN2C, GriN3A, GriN3B) receptor transcripts, and mGlu3-NAM pretreatment blocked GriN3B upregulation. In the BNST, TMT exposure increased expression of GriN2B and GriN3B in vehicle-treated rats, but decreased expression in the mGlu3-NAM group. Similar to the insular cortex, mGlu3-NAM reversed the stressor-induced upregulation of GriN3B in the BNST. mGlu3-NAM also upregulated GriN2A, GriN2B, GriN3B and Grm2 in the control group, but not the TMT group. Together, these data implicate mGlu3 receptor signaling in some lasting adaptations of predator odor stressor and anxiolytic-like effects.


Assuntos
Adaptação Fisiológica/fisiologia , Comportamento Animal/fisiologia , Córtex Insular/metabolismo , Neurotransmissores/farmacologia , Receptores de Glutamato Metabotrópico/efeitos dos fármacos , Receptores de N-Metil-D-Aspartato/metabolismo , Núcleos Septais/metabolismo , Tiazóis/farmacologia , Adaptação Fisiológica/efeitos dos fármacos , Regulação Alostérica , Animais , Comportamento Animal/efeitos dos fármacos , Condicionamento Clássico , Cadeia Alimentar , Córtex Insular/efeitos dos fármacos , Masculino , Odorantes , Ratos , Ratos Long-Evans , Receptores de N-Metil-D-Aspartato/efeitos dos fármacos , Núcleos Septais/efeitos dos fármacos
3.
Bioorg Med Chem Lett ; 53: 128416, 2021 12 01.
Artigo em Inglês | MEDLINE | ID: mdl-34710625

RESUMO

This Letter details our efforts to develop novel tricyclic M4 PAM scaffolds with improved pharmacological properties. This endeavor involved a "tie-back" strategy to replace the 3-amino-4,6-dimethylthieno[2,3-b]pyridine-2-carboxamide core which lead to the discovery of two novel tricyclic cores: a 7,9-dimethylpyrido[3',2':4,5]thieno[3,2-d]pyrimidine core and 2,4-dimethylthieno[2,3-b:5,4-c']dipyridine core. Both tricyclic cores displayed low nanomolar potency against the human M4 receptor.


Assuntos
Descoberta de Drogas , Pirimidinas/farmacologia , Receptor Muscarínico M4/antagonistas & inibidores , Relação Dose-Resposta a Droga , Humanos , Estrutura Molecular , Pirimidinas/síntese química , Pirimidinas/química , Receptor Muscarínico M4/metabolismo , Relação Estrutura-Atividade
4.
ACS Med Chem Lett ; 12(8): 1342-1349, 2021 Aug 12.
Artigo em Inglês | MEDLINE | ID: mdl-34413964

RESUMO

Herein, we report the SAR leading to the discovery of VU6028418, a potent M4 mAChR antagonist with high subtype-selectivity and attractive DMPK properties in vitro and in vivo across multiple species. VU6028418 was subsequently evaluated as a preclinical candidate for the treatment of dystonia and other movement disorders. During the characterization of VU6028418, a novel use of deuterium incorporation as a means to modulate CYP inhibition was also discovered.

5.
ACS Pharmacol Transl Sci ; 4(4): 1306-1321, 2021 Aug 13.
Artigo em Inglês | MEDLINE | ID: mdl-34423268

RESUMO

Nonselective antagonists of muscarinic acetylcholine receptors (mAChRs) that broadly inhibit all five mAChR subtypes provide an efficacious treatment for some movement disorders, including Parkinson's disease and dystonia. Despite their efficacy in these and other central nervous system disorders, antimuscarinic therapy has limited utility due to severe adverse effects that often limit their tolerability by patients. Recent advances in understanding the roles that each mAChR subtype plays in disease pathology suggest that highly selective ligands for individual subtypes may underlie the antiparkinsonian and antidystonic efficacy observed with the use of nonselective antimuscarinic therapeutics. Our recent work has indicated that the M4 muscarinic acetylcholine receptor has several important roles in opposing aberrant neurotransmitter release, intracellular signaling pathways, and brain circuits associated with movement disorders. This raises the possibility that selective antagonists of M4 may recapitulate the efficacy of nonselective antimuscarinic therapeutics and may decrease or eliminate the adverse effects associated with these drugs. However, this has not been directly tested due to lack of selective antagonists of M4. Here, we utilize genetic mAChR knockout animals in combination with nonselective mAChR antagonists to confirm that the M4 receptor activation is required for the locomotor-stimulating and antiparkinsonian efficacy in rodent models. We also report the synthesis, discovery, and characterization of the first-in-class selective M4 antagonists VU6013720, VU6021302, and VU6021625 and confirm that these optimized compounds have antiparkinsonian and antidystonic efficacy in pharmacological and genetic models of movement disorders.

6.
Bioorg Med Chem Lett ; 30(3): 126812, 2020 02 01.
Artigo em Inglês | MEDLINE | ID: mdl-31784320

RESUMO

This Letter details our efforts to discover structurally unique M4 PAMs containing 5,6-heteroaryl ring systems. In an attempt to improve the DMPK profiles of the 2,3-dimethyl-2H-indazole-5-carboxamide and 1-methyl-1H-benzo[d][1,2,3]triazole-6-carboxamide cores, we investigated a plethora of core replacements. This exercise identified a novel 2,3-dimethylimidazo[1,2-a]pyrazine-6-carboxamide core that provided improved M4 PAM activity and CNS penetration.


Assuntos
Imidazóis/química , Pirazinas/química , Receptor Muscarínico M4/química , Regulação Alostérica , Desenho de Fármacos , Avaliação Pré-Clínica de Medicamentos , Humanos , Imidazóis/metabolismo , Cinética , Ligação Proteica , Pirazinas/metabolismo , Receptor Muscarínico M4/metabolismo , Relação Estrutura-Atividade
7.
Neuron ; 105(1): 46-59.e3, 2020 01 08.
Artigo em Inglês | MEDLINE | ID: mdl-31735403

RESUMO

Non-selective antagonists of metabotropic glutamate receptor subtypes 2 (mGlu2) and 3 (mGlu3) exert rapid antidepressant-like effects by enhancing prefrontal cortex (PFC) glutamate transmission; however, the receptor subtype contributions and underlying mechanisms remain unclear. Here, we leveraged newly developed negative allosteric modulators (NAMs), transgenic mice, and viral-assisted optogenetics to test the hypothesis that selective inhibition of mGlu2 or mGlu3 potentiates PFC excitatory transmission and confers antidepressant efficacy in preclinical models. We found that systemic treatment with an mGlu2 or mGlu3 NAM rapidly activated biophysically unique PFC pyramidal cell ensembles. Mechanistic studies revealed that mGlu2 and mGlu3 NAMs enhance thalamocortical transmission and inhibit long-term depression by mechanistically distinct presynaptic and postsynaptic actions. Consistent with these actions, systemic treatment with either NAM decreased passive coping and reversed anhedonia in two independent chronic stress models, suggesting that both mGlu2 and mGlu3 NAMs induce antidepressant-like effects through related but divergent mechanisms of action.


Assuntos
Regulação Alostérica/fisiologia , Córtex Cerebral/fisiologia , Receptores de Glutamato Metabotrópico/antagonistas & inibidores , Tálamo/fisiologia , Adaptação Psicológica/efeitos dos fármacos , Anedonia/efeitos dos fármacos , Animais , Antidepressivos/farmacologia , Comportamento Animal/efeitos dos fármacos , Córtex Cerebral/metabolismo , Agonistas de Aminoácidos Excitatórios/farmacologia , Antagonistas de Aminoácidos Excitatórios/farmacologia , Ácido Glutâmico/metabolismo , Depressão Sináptica de Longo Prazo/efeitos dos fármacos , Masculino , Camundongos , Camundongos Knockout , Camundongos Transgênicos , Vias Neurais/fisiologia , Plasticidade Neuronal/fisiologia , Optogenética , Córtex Pré-Frontal/metabolismo , Córtex Pré-Frontal/fisiologia , Proteínas Proto-Oncogênicas c-fos/genética , Proteínas Proto-Oncogênicas c-fos/metabolismo , Células Piramidais/fisiologia , Tálamo/metabolismo
8.
Bioorg Med Chem Lett ; 30(4): 126811, 2020 02 15.
Artigo em Inglês | MEDLINE | ID: mdl-31787491

RESUMO

This Letter details our efforts to develop new M4 PAM scaffolds with improved pharmacological properties. This endeavor involved replacing the 3,4-dimethylpyridazine core with two novel cores: a 2,3-dimethyl-2H-indazole-5-carboxamide core or a 1-methyl-1H-benzo[d][1,2,3]triazole-6-carboxamide core. Due to shallow SAR, these cores were further evolved into two unique tricyclic cores: an 8,9-dimethyl-8H-pyrazolo[3,4-h]quinazoline core and an 1-methyl-1H-[1,2,3]triazolo[4,5-h]quinazoline core. Both tricyclic cores displayed low nanomolar potency against both human and rat M4.


Assuntos
Piridazinas/química , Quinazolinas/química , Receptor Muscarínico M4/química , Triazóis/química , Regulação Alostérica , Animais , Desenho de Fármacos , Meia-Vida , Humanos , Concentração Inibidora 50 , Piridazinas/metabolismo , Piridazinas/farmacocinética , Quinazolinas/metabolismo , Quinazolinas/farmacocinética , Ratos , Receptor Muscarínico M4/metabolismo , Relação Estrutura-Atividade , Triazóis/metabolismo , Triazóis/farmacocinética
9.
Bioorg Med Chem Lett ; 29(21): 126678, 2019 11 01.
Artigo em Inglês | MEDLINE | ID: mdl-31537424

RESUMO

This Letter details our efforts to replace the 2,4-dimethylquinoline carboxamide core of our previous M4 PAM series, which suffered from high predicted hepatic clearance and protein binding. A scaffold hopping exercise identified a novel 3,4-dimethylcinnoline carboxamide core that provided good M4 PAM activity and improved clearance and protein binding profiles.


Assuntos
Receptor Muscarínico M4/química , Regulação Alostérica , Amidas/química , Azetidinas/química , Benzeno/química , Estrutura Molecular , Ligação Proteica , Pirazinas/química , Piridinas/química , Pirimidinas/química , Relação Estrutura-Atividade
10.
ACS Med Chem Lett ; 10(3): 255-260, 2019 Mar 14.
Artigo em Inglês | MEDLINE | ID: mdl-30891122

RESUMO

Herein, we report the discovery of a novel potent, selective, CNS penetrant, and orally bioavailable mGlu4 PAM, VU0652957 (VU2957, Valiglurax). VU2957 possessed attractive in vitro and in vivo pharmacological and DMPK properties across species. To advance toward the clinic, a spray-dried dispersion (SDD) formulation of VU2957 was developed to support IND-enabling toxicology studies. Based on its overall profile, VU2957 was evaluated as a preclinical development candidate for the treatment of Parkinson's disease.

11.
ACS Chem Neurosci ; 10(3): 1035-1042, 2019 03 20.
Artigo em Inglês | MEDLINE | ID: mdl-30086237

RESUMO

This Letter describes the chemical optimization of a new series of muscarinic acetylcholine receptor subtype 1 (M1) positive allosteric modulators (PAMs) based on novel tricyclic triazolo- and imidazopyridine lactam cores, devoid of M1 agonism, e.g., no M1 ago-PAM activity, in high expressing recombinant cell lines. While all the new tricyclic congeners afforded excellent rat pharmacokinetic (PK) properties (CLp < 8 mL/min/kg and t1/2 > 5 h), regioisomeric triazolopyridine analogues were uniformly not CNS penetrant ( Kp < 0.05), despite a lack of hydrogen bond donors. However, removal of a single nitrogen atom to afford imidazopyridine derivatives proved to retain the excellent rat PK and provide high CNS penetration ( Kp > 2), despite inclusion of a basic nitrogen. Moreover, 24c was devoid of M1 agonism in high expressing recombinant cell lines and did not induce cholinergic seizures in vivo in mice. Interestingly, all of the new M1 PAMs across the diverse tricyclic heterocyclic cores possessed equivalent CNS MPO scores (>4.5), highlighting the value of both "medicinal chemist's eye" and experimental data, e.g., not sole reliance (or decision bias) on in silico calculated properties, for parameters as complex as CNS penetration.


Assuntos
Descoberta de Drogas/métodos , Imidazóis/farmacologia , Lactamas/farmacologia , Agonistas Muscarínicos/farmacologia , Piridinas/farmacologia , Receptor Muscarínico M1/agonistas , Regulação Alostérica/efeitos dos fármacos , Regulação Alostérica/fisiologia , Animais , Descoberta de Drogas/tendências , Humanos , Imidazóis/química , Lactamas/química , Camundongos , Agonistas Muscarínicos/química , Piridinas/química , Ratos , Receptor Muscarínico M1/fisiologia
12.
Mol Psychiatry ; 24(6): 916-927, 2019 06.
Artigo em Inglês | MEDLINE | ID: mdl-29269844

RESUMO

Stress can precipitate or worsen symptoms of many psychiatric disorders by dysregulating glutamatergic function within the prefrontal cortex (PFC). Previous studies suggest that antagonists of group II metabotropic glutamate (mGlu) receptors (mGlu2 and mGlu3) reduce stress-induced anhedonia through actions in the PFC, but the mechanisms by which these receptors act are not known. We now report that activation of mGlu3 induces long-term depression (LTD) of excitatory transmission in the PFC at inputs from the basolateral amygdala. Our data suggest mGlu3-LTD is mediated by postsynaptic AMPAR internalization in PFC pyramidal cells, and we observed a profound impairment in mGlu3-LTD following a single, 20-min restraint stress exposure. Finally, blocking mGlu3 activation in vivo prevented the stress-induced maladaptive changes to amydalo-cortical physiology and motivated behavior. These data demonstrate that mGlu3 mediates stress-induced physiological and behavioral impairments and further support the potential for mGlu3 modulation as a treatment for stress-related psychiatric disorders.


Assuntos
Receptores de Glutamato Metabotrópico/metabolismo , Receptores de Glutamato Metabotrópico/fisiologia , Aminoácidos , Tonsila do Cerebelo/fisiologia , Animais , Antagonistas de Aminoácidos Excitatórios/farmacologia , Ácido Glutâmico/metabolismo , Humanos , Masculino , Camundongos , Camundongos Endogâmicos C57BL , Plasticidade Neuronal/fisiologia , Córtex Pré-Frontal/metabolismo , Córtex Pré-Frontal/fisiologia , Células Piramidais/metabolismo , Estresse Fisiológico/genética , Estresse Fisiológico/fisiologia
13.
J Med Chem ; 62(1): 342-358, 2019 01 10.
Artigo em Inglês | MEDLINE | ID: mdl-30247901

RESUMO

This work describes the discovery and characterization of novel 6-(1 H-pyrazolo[4,3- b]pyridin-3-yl)amino-benzo[ d]isothiazole-3-carboxamides as mGlu4 PAMs. This scaffold provides improved metabolic clearance and CYP1A2 profiles compared to previously discovered mGlu4 PAMs. From this work, 27o (VU6001376) was identified as a potent (EC50 = 50.1 nM, 50.5% GluMax) and selective mGlu4 PAM with an excellent rat DMPK profile ( in vivo rat CLp = 3.1 mL/min/kg, t1/2 = 445 min, CYP1A2 IC50 > 30 µM). Compound 27o was also active in reversing haloperidol induced catalepsy in a rodent preclinical model of Parkinson's disease.


Assuntos
Amidas/química , Receptores de Glutamato Metabotrópico/química , Regulação Alostérica , Amidas/metabolismo , Amidas/farmacocinética , Amidas/uso terapêutico , Animais , Encéfalo/metabolismo , Catalepsia/induzido quimicamente , Catalepsia/tratamento farmacológico , Catalepsia/patologia , Citocromo P-450 CYP1A2/metabolismo , Meia-Vida , Haloperidol/toxicidade , Humanos , Isoxazóis/química , Masculino , Ratos , Ratos Sprague-Dawley , Receptores de Glutamato Metabotrópico/metabolismo , Relação Estrutura-Atividade
14.
Neuropharmacology ; 144: 19-28, 2019 01.
Artigo em Inglês | MEDLINE | ID: mdl-30326237

RESUMO

Stress can precipitate or worsen symptoms of many psychiatric illnesses. Dysregulation of the prefrontal cortex (PFC) glutamate system may underlie these disruptions and restoring PFC glutamate signaling has emerged as a promising avenue for the treatment of stress disorders. Recently, we demonstrated that activation of metabotropic glutamate receptor subtype 3 (mGlu3) induces a postsynaptic form of long-term depression (LTD) that is dependent on the activity of another subtype, mGlu5. Stress exposure disrupted this plasticity, but the underlying signaling mechanisms and involvement in higher-order cognition have not yet been investigated. Acute stress was applied by 20-min restraint and early reversal learning was evaluated in an operant-based food-seeking task. We employed whole-cell patch-clamp recordings of layer 5 prelimbic (PL)-PFC pyramidal cells to examine mGlu3-LTD and several mechanistically distinct mGlu5-dependent functions. Acute stress impaired both mGlu3-LTD and early reversal learning. Interestingly, potentiating mGlu5 signaling with the mGlu5 positive allosteric modulator (PAM) VU0409551 rescued stress-induced deficits in both mGlu3-LTD and reversal learning. Other aspects of PL-PFC mGlu5 function were not disrupted following stress; however, signaling downstream of mGlu5-Homer interactions, phosphoinositide-3-kinase (PI3K), Akt, and glycogen synthase kinase 3ß was implicated in these phenomena. These findings demonstrate that acute stress disrupts early reversal learning and PL-PFC-dependent synaptic plasticity and that potentiating mGlu5 function can restore these impairments. These findings provide a framework through which modulating coordinated mGlu3/mGlu5 signaling may confer benefits for the treatment of stress-related psychiatric disorders.


Assuntos
Córtex Cerebral/metabolismo , Plasticidade Neuronal/fisiologia , Receptor de Glutamato Metabotrópico 5/metabolismo , Receptores de Glutamato Metabotrópico/metabolismo , Reversão de Aprendizagem/fisiologia , Estresse Psicológico/metabolismo , Animais , Comportamento Apetitivo/efeitos dos fármacos , Comportamento Apetitivo/fisiologia , Fármacos do Sistema Nervoso Central/farmacologia , Córtex Cerebral/efeitos dos fármacos , Condicionamento Operante/efeitos dos fármacos , Condicionamento Operante/fisiologia , Deficiências da Aprendizagem/etiologia , Deficiências da Aprendizagem/metabolismo , Masculino , Camundongos Endogâmicos C57BL , Plasticidade Neuronal/efeitos dos fármacos , Células Piramidais/efeitos dos fármacos , Células Piramidais/metabolismo , Receptor de Glutamato Metabotrópico 5/agonistas , Restrição Física , Reversão de Aprendizagem/efeitos dos fármacos , Estresse Psicológico/psicologia , Técnicas de Cultura de Tecidos
15.
ACS Med Chem Lett ; 9(9): 917-922, 2018 Sep 13.
Artigo em Inglês | MEDLINE | ID: mdl-30258541

RESUMO

Herein, we report the chemical optimization of a new series of M1 positive allosteric modulators (PAMs) based on a novel pyrrolo[2,3-b]pyridine core, developed via scaffold hopping and iterative parallel synthesis. The vast majority of analogs in this series proved to display robust cholinergic seizure activity. However, by removal of the secondary hydroxyl group, VU6007477 resulted with good rat M1 PAM potency (EC50 = 230 nM, 93% ACh max), minimal M1 agonist activity (agonist EC50 > 10 µM), good CNS penetration (rat brain/plasma K p = 0.28, K p,uu = 0.32; mouse K p = 0.16, K p,uu = 0.18), and no cholinergic adverse events (AEs, e.g., seizures). This work demonstrates that within a chemical series prone to robust M1 ago-PAM activity, SAR can result, which affords pure M1 PAMs, devoid of cholinergic toxicity/seizure liability.

16.
Bioorg Med Chem Lett ; 28(15): 2641-2646, 2018 08 15.
Artigo em Inglês | MEDLINE | ID: mdl-29958762

RESUMO

Previous reports from our laboratory disclosed the structure and activity of a novel 1H-pyrazolo[4,3-b]pyridine-3-amine scaffold (VU8506) which showed excellent potency, selectivity and in vivo efficacy in preclinical rodent models of Parkinson's disease. Unfortunately, this compound suffered from significant CYP1A2 induction as measured through upstream AhR activation (125-fold) and thus was precluded from further advancement in chronic studies. Herein, we report a new scaffold developed recently which was systematically studied in order to mitigate the CYP1A2 liabilities presented in the earlier scaffolds. We have identified a novel structure that maintains the potency and selectivity of other mGlu4 PAMs, leading to 9i (hmGlu4 EC50 = 43 nM; AhR activation = 2.3-fold).


Assuntos
Indutores do Citocromo P-450 CYP1A2/farmacologia , Citocromo P-450 CYP1A2/biossíntese , Descoberta de Drogas , Pirazóis/química , Pirazóis/farmacologia , Piridinas/química , Piridinas/farmacologia , Receptores de Glutamato Metabotrópico/efeitos dos fármacos , Regulação Alostérica/efeitos dos fármacos , Animais , Antiparkinsonianos/farmacologia , Indução Enzimática/efeitos dos fármacos , Humanos , Ratos , Receptores de Glutamato Metabotrópico/metabolismo , Relação Estrutura-Atividade
17.
Bioorg Med Chem Lett ; 27(22): 4999-5001, 2017 11 15.
Artigo em Inglês | MEDLINE | ID: mdl-29037946

RESUMO

This Letter details our efforts to replace the 3-amino moiety, an essential pharmacophore for M4 PAM activity in most M4 PAMs to date, within the thieno[2,3-b]pyridine core, as the ß-amino carboxamide motif has been shown to engender poor solubility, varying degrees of P-gp efflux and represents a structural alert. A scaffold hopping exercise identified a novel 2,4-dimethylquinoline carboxamide core that provided M4 PAM activity and good CNS penetration without an amino moiety. In addition, MacMillan photoredox catalysis chemistry was essential for construction of the 2,4-dimethylquinoline core.


Assuntos
Amidas/química , Receptor Muscarínico M4/metabolismo , Regulação Alostérica , Amidas/síntese química , Amidas/farmacocinética , Animais , Encéfalo/metabolismo , Avaliação Pré-Clínica de Medicamentos , Meia-Vida , Ligação Proteica , Piridinas/química , Ratos , Ratos Sprague-Dawley , Receptor Muscarínico M4/química , Relação Estrutura-Atividade
18.
ACS Med Chem Lett ; 8(9): 919-924, 2017 Sep 14.
Artigo em Inglês | MEDLINE | ID: mdl-28947937

RESUMO

Herein, we detail the optimization of the mGlu2 negative allosteric modulator (NAM), VU6001192, by a reductionist approach to afford a novel, simplified mGlu2 NAM scaffold. This new chemotype not only affords potent and selective mGlu2 inhibition, as exemplified by VU6001966 (mGlu2 IC50 = 78 nM, mGlu3 IC50 > 30 µM), but also excellent central nervous system (CNS) penetration (Kp = 1.9, Kp,uu = 0.78), a feature devoid in all previously disclosed mGlu2 NAMs (Kps ≈ 0.3, Kp,uus ≈ 0.1). Moreover, this series, based on overall properties, represents an exciting lead series for potential mGlu2 PET tracer development.

19.
ACS Med Chem Lett ; 8(9): 925-930, 2017 Sep 14.
Artigo em Inglês | MEDLINE | ID: mdl-28947938

RESUMO

Herein, we detail the optimization of the mGlu3 NAM, VU0650786, via a reductionist approach to afford a novel, simplified mGlu3 NAM scaffold that engenders potent and selective mGlu3 inhibition (mGlu3 IC50 = 245 nM, mGlu2 IC50 > 30 µM) with excellent central nervous system penetration (rat brain/plasma Kp = 1.2, Kp,uu = 0.40). Moreover, this new chemotype, exemplified by VU6010572, requires only four synthetic steps and displays improved physiochemical properties and in vivo efficacy in a mouse tail suspension test (MED = 3 mg/kg i.p.).

20.
ACS Chem Neurosci ; 8(4): 866-883, 2017 04 19.
Artigo em Inglês | MEDLINE | ID: mdl-28001356

RESUMO

Both historical clinical and recent preclinical data suggest that the M1 muscarinic acetylcholine receptor is an exciting target for the treatment of Alzheimer's disease and the cognitive and negative symptom clusters in schizophrenia; however, early drug discovery efforts targeting the orthosteric binding site have failed to afford selective M1 activation. Efforts then shifted to focus on selective activation of M1 via either allosteric agonists or positive allosteric modulators (PAMs). While M1 PAMs have robust efficacy in rodent models, some chemotypes can induce cholinergic adverse effects (AEs) that could limit their clinical utility. Here, we report studies aimed at understanding the subtle structural and pharmacological nuances that differentiate efficacy from adverse effect liability within an indole-based series of M1 ago-PAMs. Our data demonstrate that closely related M1 PAMs can display striking differences in their in vivo activities, especially their propensities to induce adverse effects. We report the discovery of a novel PAM in this series that is devoid of observable adverse effect liability. Interestingly, the molecular pharmacology profile of this novel PAM is similar to that of a representative M1 PAM that induces severe AEs. For instance, both compounds are potent ago-PAMs that demonstrate significant interaction with the orthosteric site (either bitopic or negative cooperativity). However, there are subtle differences in efficacies of the compounds at potentiating M1 responses, agonist potencies, and abilities to induce receptor internalization. While these differences may contribute to the differential in vivo profiles of these compounds, the in vitro differences are relatively subtle and highlight the complexities of allosteric modulators and the need to focus on in vivo phenotypic screening to identify safe and effective M1 PAMs.


Assuntos
Regulação Alostérica/efeitos dos fármacos , Descoberta de Drogas , Agonistas Muscarínicos/química , Agonistas Muscarínicos/farmacologia , Receptor Muscarínico M1/efeitos dos fármacos , Animais , Humanos , Camundongos , Agonistas Muscarínicos/síntese química , Ratos , Receptor Muscarínico M1/metabolismo , Relação Estrutura-Atividade
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA